Acampora, G., Loia, V. and Gaeta, M., 2010. Exploring e-learning knowledge through ontological memetic agents.
IEEE Computational Intelligence Magazine,
5(2), pp.66-77. DOI:
10.1109/MCI.2010.936306
Adanır, A. G., İsmailova, R., Omuraliev, A. and Muhametjanova, G., 2020. Learners’ perceptions of online exams: A comparative study in Turkey and Kyrgyzstan.
International Review of Research in Open and Distributed Learning,
21(3), pp.1-17.
https: // doi. org/ 10. 1177/ 2042753019899713
Altuwairqi, K., Jarraya, S.K., Allinjawi, A. and Hammami, M., 2021. A new emotion–based affective model to detect student’s engagement.
Journal of King Saud University-Computer and Information Sciences,
33(1), pp.99-109. DOI:
10.1016/j.jksuci.2018.12.008
Bahreini, K., Nadolski, R. and Westera, W., 2016. Towards multimodal emotion recognition in e-learning environments.
Interactive Learning Environments,
24(3), pp.590-605. DOI
10.1080/10494820.2014.908927
Bereyhi, F. 2018. Image and E-learning. The National Conference on New World Achievements in Education, Psychology, Law and Social-Cultural Studies. Khoy. [In Persian]
Boticario, J.G. and Santos, O.C., 2007. An Open IMS-based user modelling approach for developing adaptive learning management systems.
Journal of Interactive Media in Education. DOI:
10.5334/2007-2
Ebner, M., 2007. E-Learning 2.0= e-Learning 1.0+ Web 2.0? In
The Second International Conference on Availability, Reliability and Security (ARES'07) (pp. 1235-1239). IEEE. DOI:
10.1109/ARES.2007.74
Fernández, A. and Herrera, F., 2012. Linguistic fuzzy rules in data mining: follow-up mamdani fuzzy modeling principle. Combining Experimentation and Theory: A Hommage to Abe Mamdani, pp.103-122.
Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks.
science,
313(5786), pp.504-507.
DOI: 10.1126/science.1127647
Hooshyar Amiri, Mehri, Norouzi Daryoosh, Zarei Esmaeel. 2015. The effect of using educational images during teaching on the development of students' spatial intelligence. Conference of new researches in humanities. Tehran: Center for International Broadcasting Conferences. [In Persian]
Huang, M., Xu, G. and Li, H., 2023. Construction of personalized learning service system based on deep learning and knowledge graph.
Applied Mathematics and Nonlinear Sciences,
9(1).:
10.2478/amns.2023.2.01683
Kort, B., Reilly, R. and Picard, R.W., 2001, May. External representation of learning process and domain knowledge: Affective state as a determinate of its structure and function. In Workshop on Artificial Intelligence in Education (AI-ED 2001), San Antonio,(May 2001) (pp. 64-69).
Krarup Jakob.R.A.R. and Pruzan, P.M., 1983. The simple plant location problem: Survey and synthesis.
European journal of operational research,
12(36-81), p.41.
10.1016/0377-2217(83)90181-9
Lee, C.S., Wang, M.H. and Chen, J.J., 2008. Ontology-based intelligent decision support agent for CMMI project monitoring and control.
International Journal of Approximate Reasoning,
48(1), pp.62-76. DOI:
10.1016/j.ijar.2007.06.007
Lee, C.S., Jian, Z.W. and Huang, L.K., 2005. A fuzzy ontology and its application to news summarization.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
35(5), pp.859-880. DOI:
10. 1109 /TSMCB.2005.845032
Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B. and Lee, B.S., 2007. Efficient hierarchical parallel genetic algorithms using grid computing.
Future Generation Computer Systems,
23(4), pp.658-670. DOI :
10. 1016 /j.future.2006.10.008
Martin, E. and Carro, R.M., 2009. Supporting the development of mobile adaptive learning environments: A case study.
IEEE Transactions on Learning Technologies,
2(1), pp.23-36. DOI:
10.1109/TLT.2008.24
Miao, M., Wu, J., Cai, F. and Wang, Y.G., 2022. A modified memetic algorithm with an application to gene selection in a sheep body weight study.
Animals,
12(2), p.201. DOI:
10.3390/ani12020201
Murugesan, S., 2007. Understanding Web 2.0.
IT professional,
9(4), pp.34-41. DOI:
10.1109/MITP.2007.78
Oguzor, N.S., Nosike, A.N. and Opara, J.A., 2011. Information Technology (IT) and the learning society: growth and challenges. Educational Research and Reviews, 6(4), pp.342-346.
Pastore, R., 2002. Elearning in education: An overview. In
Society for Information Technology & Teacher Education International Conference (pp. 275-276). Association for the Advancement of Computing in Education (AACE).
https://www.learntechlib.org/p/10519
Sargazi Moghadam, T, Rahati, 2012. A. Application of memetic algorithm and fuzzy systems to produce web-based e-learning 2. 4th Iranian Conference on Electrical and Electronics Engineering. Gonabad. Iran, [In Persian]
Sargazi Moghadam, T., Darejeh, A., Delaramifar, M. and Mashayekh, S., 2023. Toward an artificial intelligence-based decision framework for developing adaptive e-learning systems to impact learners’ emotions.
Interactive Learning Environments, pp.1-21. DOI:
10. 1080/ 10494820.2023.2188398
Seraji, F., Ataran, M. 2012. E-Learning. Hamadan: Bu Ali University [In Persian]
Shabha, G., 2000. Virtual universities in the third millennium: an assessment of the implications of teleworking on university buildings and space planning.
Facilities,
18(5/6), pp.235-244. DOI:
10. 1108 / 0263 277 001 032 8108
Shrestha, S. and Pokharel, M., 2021. Determining learning style preferences of learners.
Journal of Computer Science Research,
3(1), pp.33-43. DOI:
10.30564/jcsr.v3i1.2761
Singh, G., O'Donoghue, J. and Worton, H., 2005. A study into the effects of elearning on higher education. Journal of university teaching & learning practice, 2(1), pp.16-27. https://doi.org/10.53761/ 1.2.1.3
Tang, J., Lim, M.H., Ong, Y.S. and Er, M.J., 2006. Parallel memetic algorithm with selective local search for large scale quadratic assignment problems. International Journal of Innovative Computing, Information and Control, 2(6), pp.1399-1416.
Turky, A., Sabar, N.R., Dunstall, S. and Song, A., 2020. Hyper-heuristic local search for combinatorial optimisation problems.
Knowledge-Based Systems,
205, p.106264. DOI:
10.1016/j.knosys.2020.106264
Wang, M. and Kang, M., 2006. Cybergogy for engaged learning: A framework for creating learner engagement through information and communication technology.
Engaged learning with emerging technologies, pp.225-253. DOI:
10.13140/RG.2.2.11569.02408
Zhu, Z., Ong, Y.S. and Dash, M., 2007. Wrapper–filter feature selection algorithm using a memetic framework.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
37(1), pp.70-76. DOI
: 10. 1109 / TSMCB.2006.883267
Zolfaghari, F. and Rahati, A., 2014. Electronic Lesson Application Compatible with the Learning Styles of Students With Memetic Pattern.
Technology of Education Journal (TEJ),
9(1), pp.1-14.
https: // doi. Org /10.22061/tej.2014.248 [In Persian]
Zulkifli, S.F., Shiang, C.W., bin Khairuddin, M.A. and bt Jali, N., 2020. Modeling emotion oriented approach through agent-oriented approach.
Int. J. Adv. Sci. Eng. Inf. Technol,
10(2), p.647â. DOI:
http: // dx. doi. org/10.18517/ijaseit.10.2.10644