نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار زبان و ادبیات انگلیسی، دانشکده ادبیات و علوم انسانی، دانشگاه حکیم سبزواری، سبزوار، ایران

2 مدرس مدعوِ زبان و ادبیات انگلیسی، گروهِ زبان و ادبیات انگلیسی، دانشکدهٔ ادبیات و علوم انسانی، دانشگاه حکیم سبزواری، سبزوار، ایران.

3 دانشجوی دکتری آموزش زبان انگلیسی، دانشکده ادبیات و علوم انسانی، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

هم‌زمان با شتاب گرفتن پیشرفت‌ها در حوزه هوش مصنوعی، این پژوهش کیفی بررسی می‌کند که مترجمان حرفه‌ای مزیت‌ها، چالش‌ها و مسیرهای احتمالی آینده ترجمه یاری‌گرفته از هوش مصنوعی را چگونه می‌بینند؛ برای گردآوری داده‌ها با بیست مترجم دارای دست‌کم سه سال سابقه از تخصص‌ها و محیط‌های کاری گوناگون مصاحبه‌های نیمه‌ساختاریافته از طریق سامانه‌های دیدار تصویری انجام شد، متن مصاحبه‌ها کلمه‌به‌کلمه پیاده‌سازی و بر پایه دستورالعمل‌های براون و کلارک با روش تحلیل مضمونی بررسی گردید، و برای افزایش اعتبار، کدگذاری توسط همکار باتجربه بازبینی شد؛ یافته‌ها چهار فایده برجسته را نشان داد: افزایش سرعت از راه پیش‌نویس‌سازی و خودکارسازی بخش‌های تکراری، مقرون‌به‌صرفه بودن برای پروژه‌های بزرگ یا در مواردی که ضیق وقت وجود دارد، بهبود انسجام و کنترل دقیق‌تر اصطلاحات به‌ویژه در متون فنی، و تسهیل همکاری از طریق حافظه‌ها و واژه‌نامه‌های مشترک؛ در کنار این‌ها، مخاطرات و چالشهای مهمی نیز گزارش شد: دشواری همیشگی در بازنمایی ظرافت‌های فرهنگی و کاربردشناختی و در ایجاد اثرگذاری بلاغی، خطر اتکای بیش‌ازحد که می‌تواند به فرسایش مهارت‌ها و افزایش توقعات مشتریان بینجامد، خستگی ناشی از پساویرایشِ برون‌دادهای نامأنوس یا مبهم، نگرانی‌های اخلاقی درباره حریم خصوصی داده، محرمانگی، مؤلفیت و امنیت شغلی، و محدودیت‌های فنی در زبان‌های کم‌منبع یا گونه‌های پیچیده زبانی؛ با جمع‌بندی شواهد همسو و ناهمسو، الگوی «انسان در حلقه با محوریت شخصی‌سازی و بهره‌وری» پیشنهاد می‌شود که در آن هوش مصنوعی به‌عنوان همیار در پوشش آموزشی و حرفه‌ایِ انسان‌محور به کار گرفته می‌شود و خبرگی انسانی همچنان در صورت‌بندی مسئله، سازگار کردن متن با مخاطب، تضمین کیفیت و تصمیم‌های ارزش‌مدار تعیین‌کننده می‌ماند؛ دلالت‌های عملی شامل توسعه حرفه‌ای هدفمند در زمینه سواد هوش مصنوعی، راهبردهای پساویرایش و آگاهی از سوگیری، بازطراحی برنامه‌های آموزش مترجمی برای پرورش شایستگی‌های ترکیبی و ارزیابی انتقادی برون‌دادهای هوش مصنوعی، و تدوین سیاست‌های سازمانی و بخشی درباره حاکمیت داده، شفافیت و جبران خدمت منصفانه است. در مجموع، نتایج از افتادن به دام بدبینی نسبت به فناوریهای روز و شورزدگی و تعصب کورکورانه پرهیز می‌دهد و بر همکاریِ سنجیده انسان و هوش مصنوعی تأکید می‌کند؛ همکاری‌ای که از این فناوری در جایی بهره می‌گیرد که ارزش می‌افزاید و هم‌زمان ژرفای فرهنگی، یکپارچگی اخلاقی و عاملیت خلاقانه مترجم حرفه‌ای را پاس می‌دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Unveiling the Future of Translation: A Qualitative Study on the Benefits, Challenges, and Future Venues of Translation with AI

نویسندگان [English]

  • Asghar Moulavinafchi 1
  • Reyhane Sadat Shadpour 2
  • Yasir Hazim Qasim Qasim 3

1 Assistant Professor of English Language and Literature, Faculty of Literature and Humanities, Hakim Sabzevari University, Sabzevar, Iran

2 Adjunct Lecturer in English Language and Literature, Department of English Language and Literature, Faculty of Literature and Humanities, Hakim Sabzevari University, Sabzevar, Iran.

3 Ph.D. Student of TEFL, Faculty of Literature and Humanities, Hakim Sabzevari University, Sabzevar, Iran

چکیده [English]

Against the backdrop of rapid advances in artificial intelligence (AI), this qualitative study investigates how professional translators perceive the benefits, challenges, and likely future trajectories of AI-assisted translation. We conducted semi-structured Zoom interviews with 20 translators (≥3 years’ experience) from diverse specializations and professional contexts. Interviews were transcribed verbatim and analyzed thematically following Braun and Clarke’s procedures, with code-checking by an experienced colleague to enhance credibility. Participants reported four prominent benefits of AI-enabled workflows: (1) efficiency gains through pre-drafting and automation of repetitive segments; (2) cost-effectiveness for large or time-sensitive projects; (3) improved consistency and terminological control, particularly in technical domains; and (4) smoother collaboration via shared memories and glossaries. Equally salient, however, were perceived risks and frictions: AI’s persistent difficulty with cultural-pragmatic nuance and rhetorical effect; over-reliance that can deskill practitioners and inflate client expectations; post-editing fatigue stemming from unnatural or ambiguous output; ethical concerns regarding data privacy, confidentiality, authorship, and job security; and technical limitations in low-resource languages or complex genres. Synthesizing convergent and dissonant evidence, we propose a human-in-the-loop “personalization and productivity” model in which AI serves as a co-pilot embedded within a human-led pedagogical and professional envelope. Within this model, human expertise remains decisive for problem framing, audience adaptation, quality assurance, and value-laden decisions. Implications include (a) targeted professional development in AI literacy, post-editing strategies, and bias awareness; (b) curricular redesign in translator education to foreground hybrid competencies and critical evaluation of AI outputs; and (c) organizational and sector-level policies for data governance, transparency, and fair remuneration. Limitations concern the modest, predominantly Iranian sample and reliance on self-report interviews; future research should incorporate longitudinal designs, task-based performance data, and comparative studies across languages and domains. Overall, our findings caution against both technological pessimism and automation hype, arguing instead for calibrated human–AI collaboration that leverages automation where it adds value while safeguarding cultural depth, ethical integrity, and the creative agency that defines professional translation. 

کلیدواژه‌ها [English]

  • AI-Assisted Translation
  • Professional Translators
  • Generative/Neural MT
  • Post-editing
  • Human–AI Collaboration
  • Ethics
Alharbi, W. (2023). The Use and Abuse of Artificial Intelligence-Enabled Machine Translation in the EFL Classroom: An Exploratory Study. Journal of Education and e-learning Research, 10(4), 689-701. https://doi.org/10.20448/jeelr.v10i4.5091
Alwazna, R. (2013). Is Translation an Art, Science or Both?. University of Sharjah (UoS) Journal of Humanities and Social Sciences, 10(1), 45-73. https://doi.org/10.36394/jhss/10/1/10
An, X., Chai, C. S., Li, Y., Zhou, Y., & Yang, B. (2023). Modeling students’ perceptions of artificial intelligence assisted language learning. Computer Assisted Language Learning, 1-22. https://doi.org/10.1080/09588221.2023.2246519
At-tall, S. M. (2019). Comparative study between Google Translator and human translator in rendering colloquial Arabic expressions in the late Prime Minister Wasfi At-Tall's speeches into English, (Unpublished Master's thesis). Yarmouk University, Irbid, Jordan.
Bailey, J. (2023). AI in Education: The leap into a new era of machine intelligence carries risks and challenges, but also plenty of promise. Education Next, 23(4), 29+. https://link.gale.com/apps/doc/A766115833/AONE?u=anon~5e959795&sid=googleScholar&xid=583afcbd
Barrault, L., Chung, Y. A., Meglioli, M. C., Dale, D., Dong, N., Duquenne, P. A., ... & Wang, S. (2023). SeamlessM4T: Massively Multilingual & Multimodal Machine Translation. arXiv preprint arXiv:2308.11596. https://doi.org/10.48550/arXiv.2308.11596
Başer, Z., & Aral, M. (2024). Perspectives of translation students on artificial intelligence-based translation tools. Kırıkkale Üniversitesi Sosyal Bilimler Dergisi, 14(3), 39-55.
Belda-Medina, J., & Calvo-Ferrer, J. R. (2022). Using chatbots as AI conversational partners in language learning. Applied Sciences, 12(17), 8427. https://doi.org/10.3390/app12178427
Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huang, S., ... & Turchi, M. (2017). Findings of the 2020 conference on machine translation (wmt20). In Proceedings of the Fifth Conference on Machine Translation (pp.1–55). Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-5301
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.
Chiu, T. K., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118
Costa-Jussa, M. R., & Fonollosa, J. A. (2015). Latest trends in hybrid machine translation and its applications. Computer Speech & Language, 32(1), 3-10. https://doi.org/10.1016/j.csl.2014.11.001
Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.
Derakhshan, A., Kruk, M., Mehdizadeh, M., & Pawlak, M. (2021). Boredom in online classes in the Iranian EFL context: Sources and solutions. System, 101, 102556. https://doi.org/10.1016/j.system.2021. 102556.
Dhariya, O., Malviya, S., & Tiwary, U. S. (2017, January). A hybrid approach for Hindi-English machine translation. In 2017 International Conference on Information Networking (ICOIN) (pp. 389-394). IEEE. https://ieeexplore.ieee.org/abstract/document/7899465
Dizon, G., & Tang, D. (2020). Intelligent personal assistants for autonomous second language learning: An investigation of Alexa. The JALT Call Journal, 16(2), 107-120. https://doi.org/10.29140/jaltcall. v16n2.273
Drugan, J., & Tipton, R. (2017). Translation, ethics and social responsibility. The translator, 23(2), 119-125. https://doi.org/10.1080/13556509.2017.1327008
Emara, E. A. E. H. M. (2024). Using AI tools to enhance translation skills among basic education English major students. CDELT Occasional Papers in the Development of English Education, 86(1), 339-380. https://dx.doi.org/10.21608/opde.2024.362829
Fathi, J., Rahimi, M., & Derakhshan, A. (2024). Improving EFL learners’ speaking skills and willingness to communicate via artificial intelligence-mediated interactions. System, 121, 103254. https://doi.org/10.1016/j.system.2024.103254
Gu, J., Hassan, H., Devlin, J., & Li, V. O. K. (2018). Universal neural machine translation for extremely low resource languages. Proceedings of the 2018 Conference of the North American Chapter Of the Association for Computational Linguistics: Hu. Volume 1 (Long Papers), (pp. 344 354). New Orleans, Louisiana. Association for Computational Linguistics. https://doi.org/10.18653/v1/n18-1032
Hdidan, A. M. (2025). The Role and Effect of AI in Translation. مجلة التربوی, (26), 1059-1067.‎
Hutchins, W. J. (2001). Early Years in Machine Translation. John Benjamins Publishing Company. https://doi.org/10.1075/sihols.97
Hutchins, W., & Somers, H. (1992). An introduction to machine translation. London: Academic Press.
Jain, K. K., & Raghuram, J. N. V. (2024). Gen-AI integration in higher education: Predicting intentions using SEM-ANN approach. Education and Information Technologies, 29(13), 17169-17209. https://doi.org/10.1007/s10639-024-12506-4
Kazu, I. Y., & Kuvvetli, M. (2023). The Influence of Pronunciation Education via Artificial Intelligence Technology on Vocabulary Acquisition in Learning English. International Journal of Psychology and Educational Studies, 10(2), 480-493. https://doi.org/10.52380/ijpes.2023.10.2.1044
Kirchhoff, P. (2024). Machine translation in English language teaching. ELT Journal, 78(4), 393-400. https://doi.org/10.1093/elt/ccae034
Koehn, P., & Knowles, R. (2017, August). Six Challenges for Neural Machine Translation. In Proceedings of the First Workshop on Neural Machine Translation (pp. 28-39). https://doi.org/10.18653/v1/W17-3204
Kruk, M., & Kałużna, A. (2025). Investigating the Role of AI Tools in Enhancing Translation Skills, Emotional Experiences, and Motivation in L2 Learning. European Journal of Education, 60(1), e12859. https://doi.org/10.1111/ejed.12859
Kruk, M., & Pawlak, M. (2022). Understanding emotions in English language learning in virtual worlds. Routledge.
Lakew, S. M., Federico, M., Negri, M., & Turchi, M. (2018). Multilingual neural machine translation for low-resource languages. IJCoL. Italian Journal of Computational Linguistics, 4(4-1), 11-25. https://doi.org/10.4000/ijcol.531
Lee, T. K. (2024). Artificial intelligence and posthumanist translation: ChatGPT versus the translator. Applied Linguistics Review, 15(6), 2351-2372. https://doi.org/10.1515/applirev-2023-0122
Li, B. (2023). Ethical issues for literary translation in the Era of artificial intelligence. Babel, 69(4), 529-545. https://doi.org/10.1075/babel.00334.li
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage.
Liu, S. C., & Hung, P. Y. (2016). Teaching pronunciation with computer assisted pronunciation instruction in a technological university. Universal Journal of Educational Research, 4(9), 1939-1943. https://doi.org/10.13189/ujer.2016.040902
Massey, G., & Wieder, R. (2019). Quality assurance in translation and corporate communications: Exploring an interdisciplinary interface. In Quality assurance and assessment practices in translation and interpreting (pp. 57-87). IGI Global. https://doi.org/10.4018/978-1-5225-5225-3.ch003
Mohamed, Y. A., Khanan, A., Bashir, M., Mohamed, A. H. H., Adiel, M. A., & Elsadig, M. A. (2024). The impact of artificial intelligence on language translation: a review. Ieee Access, 12, 25553-25579. https://doi.org/10.1109/ACCESS.2024.3366802
Moorkens, J. (2022). Ethics and machine translation. Machine translation for everyone: Empowering users in the age of artificial intelligence, 18, 121-140.
Muñoz-Basols, J., Neville, C., Lafford, B. A., & Godev, C. (2023). Potentialities of applied translation for language learning in the era of artificial intelligence. Hispania, 106(2), 171-194. https://doi.org/10.1353/hpn.2023.a899427
Nazari, N., Shabbir, M. S., & Setiawan, R. (2021). Application of Artificial Intelligence powered digital writing assistant in higher education: randomized controlled trial. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e07014.
Prates, M. O., Avelar, P. H., & Lamb, L. C. (2020). Assessing gender bias in machine translation: a case study with google translate. Neural Computing and Applications, 32, 6363-6381. https://doi.org/10.1007/s00521-019-04144-6
Ren, X. (2025). We want but we can’t: measuring EFL translation majors’ intention to use ChatGPT in their translation practice. Humanities and Social Sciences Communications, 12(1), 1-11. https://doi.org/10.1057/s41599-025-04604-6
Song, C., & Song, Y. (2023). Enhancing academic writing skills and motivation: assessing the efficacy of ChatGPT in AI-assisted language learning for EFL students. Frontiers in Psychology, 14, 1260843. https://doi.org/10.3389/fpsyg.2023.1260843
Van Manen, M. (2016). Phenomenology of practice: Meaning-giving methods in phenomenological research and writing. Routledge.
Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez, A., Gouws, S., ... & Uszkoreit, J. (2018, March). Tensor2Tensor for Neural Machine Translation. In Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track) (pp. 193-199). https://aclanthology.org/W18-1819.pdf
Vela-Valido, J. (2021). Translation quality management in the AI age. New technologies to perform translation quality management operations. Revista Tradumàtica. Tecnologies de la Traducció, 19, 93-111. https://doi.org/10.5565/rev/tradumatica.285
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (Vol. 86). Harvard university press.
Yan, J., Yan, P., Chen, Y., Li, J., Zhu, X., & Zhang, Y. (2024). Gpt-4 vs. human translators: A comprehensive evaluation of translation quality across languages, domains, and expertise levels. arXiv preprint arXiv:2407.03658. https://doi.org/10.48550/arXiv.2407.03658
Yang, C. (2022, August). The Application of Artificial Intelligence in Translation Teaching. In Proceedings of the 4th International Conference on Intelligent Science and Technology, 56-60 https://doi.org/10.1145/3568923.3568933
Yang, J. (2024). The Perception of Pre-service English Teachers’ use of AI Translation Tools in EFL Writing. The Journal of the Convergence on Culture Technology, 10(1), 121–128. https://doi.org/10.17703/JCCT.2024.10.1.121
Yang, W., & Lin, C. (2025). Translanguaging with generative AI in EFL writing: Students’ practices and perceptions. Journal of Second Language Writing, 67, 101181. https://doi.org/10.1016/j.jslw.2025.101181
Yuasa, M., & Takeuchi, O. (2024). Strategic use of machine translation: A case study of Japanese EFL university students. AILA Review, 37(2), 215-240. https://doi.org/10.1075/aila.24020.yua
Yuxiu, Y. (2024). Application of translation technology based on AI in translation teaching. Systems and Soft Computing, 6, 200072. https://doi.org/10.1016/j.sasc.2024.200072
Zhao, W., Huang, S., & Yan, L. (2024, May). ChatGPT and the future of translators: overview of the application of interactive AI in English translation teaching. In 2024 4th international conference on computer communication and artificial intelligence (CCAI) (pp. 303-307). IEEE.
Zouhaier, S. (2023). The impact of artificial intelligence on higher education: An empirical study. European Journal of Educational Sciences, 10(1), 17-33. https://doi.org/10.19044/ejes.v10no1a17